Abstract

BackgroundDengue is a mosquito-borne viral disease caused by four closely related serotypes of Dengue viruses (DENVs). This disease whose symptoms range from mild fever to potentially fatal haemorrhagic fever and hypovolemic shock, threatens nearly half the global population. There is neither a preventive vaccine nor an effective antiviral therapy against dengue disease. The difference between severe and mild disease appears to be dependent on the viral load. Early diagnosis may enable timely therapeutic intervention to blunt disease severity by reducing the viral load. Harnessing the therapeutic potential of RNA interference (RNAi) to attenuate DENV replication may offer one approach to dengue therapy.Methodology/Principal FindingsWe screened the non-translated regions (NTRs) of the RNA genomes of representative members of the four DENV serotypes for putative siRNA targets mapping to known transcription/translation regulatory elements. We identified a target site in the 5′ NTR that maps to the 5′ upstream AUG region, a highly conserved cis-acting element essential for viral replication. We used a replication-defective human adenovirus type 5 (AdV5) vector to deliver a short-hairpin RNA (shRNA) targeting this site into cells. We show that this shRNA matures to the cognate siRNA and is able to inhibit effectively antigen secretion, viral RNA replication and infectious virus production by all four DENV serotypes.Conclusion/SignificanceThe data demonstrate the feasibility of using AdV5-mediated delivery of shRNAs targeting conserved sites in the viral genome to achieve inhibition of all four DENV serotypes. This paves the way towards exploration of RNAi as a possible therapeutic strategy to curtail DENV infection.

Highlights

  • The genus Flavivirus, of the family Flaviviridae, includes several vector-borne viruses of which the four serotypes of dengue viruses (DENV-1, -2, -3 and -4) have emerged as the most significant of current challenges to global public health [1,2]

  • We investigated the feasibility of destroying dengue virus genomic RNA using a phenomenon known as RNA interference, in which the RNA-cleaving activity of a cellular enzyme complex is directed to a site in the target RNA, using a short complementary RNA known as small interfering RNA

  • Our results showed that the adenovirus delivered small interfering RNA which could inhibit all four types of dengue viruses

Read more

Summary

Introduction

The genus Flavivirus, of the family Flaviviridae, includes several vector-borne viruses of which the four serotypes of dengue viruses (DENV-1, -2, -3 and -4) have emerged as the most significant of current challenges to global public health [1,2]. Upon infection of susceptible cells by DENV, the ORF is translated into a single ,3400 amino acid (aa) residue polyprotein precursor which matures into 3 structural proteins, the capsid, envelope and membrane, and 7 non-structural (NS) proteins, NS1, 2a, 2b, 3, 4a, 4b and 5 This is followed by replication, mediated principally by NS3 and NS5, of the sense genomic RNA through a complementary antisense RNA intermediate [3]. Dengue is a mosquito-borne viral disease caused by four closely related serotypes of Dengue viruses (DENVs) This disease whose symptoms range from mild fever to potentially fatal haemorrhagic fever and hypovolemic shock, threatens nearly half the global population. Harnessing the therapeutic potential of RNA interference (RNAi) to attenuate DENV replication may offer one approach to dengue therapy

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.