Abstract

The beta-cells in the pancreatic islets of Langerhans are the targets of autoreactive T-cells and are destroyed in type 1 diabetes. Macrophage-derived interleukin-1beta (IL-1beta) is important in eliciting beta-cell dysfunction and initiating beta-cell damage in response to microenvironmental changes within islets. In particular, IL-1beta can impair glucose-stimulated insulin production in beta-cells in vitro and can sensitize them to Fas (CD95)/FasL-triggered apoptosis. In this report, we have examined the ability to block the detrimental effects of IL-1beta by genetically modifying islets by adenoviral gene transfer to express the IL-1 receptor antagonist protein. We demonstrate that adenoviral gene delivery of the cDNA encoding the interleukin-1 receptor antagonist protein (IL-1Ra) to cultured islets results in protection of human islets in vitro against IL-1beta-induced nitric oxide formation, impairment in glucose-stimulated insulin production, and Fas-triggered apoptosis activation. Our results further support the hypothesis that IL-1beta antagonism in in situ may prevent intra-islet proinsulitic inflammatory events and may allow for an in vivo gene therapy strategy to prevent insulitis and the consequent pathogenesis of diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.