Abstract

An eGFP-intron splicing system that allows for co-ordinated expression of up to four siRNAs from a single adenoviral vector has been developed. In this splicing structure the intron, embedded by a multiple miR30-based shRNAs, is located between two incomplete eGFP domains which require successful splicing for functionality. To prove the principle of the method, an adenoviral vector delivering four transcripts targeting survivin, XIAP, Hec1, and VEGF was developed which enabled the knockdown of target genes by 70, 70, 54 and 44%, respectively, in HeLa cells. This is the first report of multi-siRNA engineering technology in the context of adenoviral vector which would enable concomitant knockdown of tumor-related target genes. The results provide a strategy for gene function analysis and cancer gene therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.