Abstract

Lysophosphatidylcholine is generated through the hydrolysis of phosphatidylcholine by phospholipase A2 and reversely converted to phosphatidylcholine by lysophosphatidylcholine acyltransferase 1. Although lysophosphatidylcholine is a potent proinflammatory mediator and increased in several types of acute lung injuries, the role of lysophosphatidylcholine acyltransferase 1 has not yet been addressed. We aimed to investigate whether the exogenous expression of lysophosphatidylcholine acyltransferase 1 could attenuate acute lung injury. Randomized, prospective animal study, including in vitro primary cell culture test. University medical center research laboratory. Adult male Sprague-Dawley rats. Recombinant adenoviruses carrying complementary DNA encoding lysophosphatidylcholine acyltransferase 1 or lacZ (Ad-lacZ) as a control was constructed. Alveolar type II cells were isolated from rats and cultured on tissue-culture inserts. Rats were pretreated with an endobronchial administration of the recombinant adenovirus. One week later, they were IV injected with oleic acid. The lungs were examined 4 hours post oleic acid. Adenoviruses carrying complementary DNA encoding lysophosphatidylcholine acyltransferase 1-infected alveolar type II cells showed lower lysophosphatidylcholine levels and a decreased percentage of cell death compared with Ad-lacZ-infected cells or noninfected cells after exposure to hydrogen peroxide for 1 hour. Compared with Ad-lacZ plus oleic acid-treated lungs, adenoviruses carrying complementary DNA encoding lysophosphatidylcholine acyltransferase 1 plus oleic acid-treated lungs showed a lower wet-to-dry lung weight ratio, a higher lung compliance, lower lysophosphatidylcholine contents, higher phosphatidylcholine contents, and a lower apoptosis ratio of alveolar type II cells. Histological scoring revealed that the adenoviruses carrying complementary DNA encoding lysophosphatidylcholine acyltransferase 1-treated lungs developed oleic acid-induced lung injuries that were attenuated compared with those of Ad-lacZ-treated lungs. Exogenous expression of lysophosphatidylcholine acyltransferase 1 protects alveolar type II cells from oxidant-induced cell death in vitro, and endobronchial delivery of a lysophosphatidylcholine acyltransferase 1 transgene effectively attenuates oleic acid-induced acute lung injury in vivo. These results suggest that lysophosphatidylcholine acyltransferase 1 plays a protective role in acute lung injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.