Abstract

Exogenous adenosine triphosphoric acid produces a biphasic effect on the resting membrane potential of muscle fibers in rat diaphragm. Depolarization of the sarcolemma observed 10 min after application of adenosine triphosphoric acid results from activation of Na(+)/K(+)/2Cl(-) cotransport. The increase in chloride cotransport is related to activation of postsynaptic P2Y receptors and protein kinase C. Repolarization of the membrane develops 40 min after treatment with adenosine triphosphoric acid and after 50 min the resting membrane potential almost returns the control level. This increase in the resting membrane potential of the sarcolemma is probably associated with activation of the Na(+)/K(+) pump and increase in membrane permeability for chlorine ions in response to long-term activity of Cl(-) cotransport. Thus, adenosine triphosphoric acid co-secreted with acetylcholine in the neuromuscular synapse probably plays a role in the regulation resting membrane potential and cell volume of muscle fibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.