Abstract

Most drug-delivery systems (DDS) suffer from poor selectivity to cancer/normal cells or the complicated synthetic process. Herein, we employed a novel facile method to develop an oligodeoxy nucleotides based DDS composed with adenosine-5'- triphosphate (ATP) aptamer and a pH responsive cytosine (C) DNA fragment for specific daunomycine (DNM) delivery. The DDS has ATP/pH dual-responsive drug release, can selectively internalize into tumor cell lines and thus has ultrahigh cancer/normal cell selectivity over the individual drug. The non-chemical synthesis, controllable dual-responsive intracellular drug release, and high cancer/normal cell selectivity endowed the DDS high biocompatibility and significant tumor suppression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.