Abstract

Background/Aim: The recent cloning and sequencing of the Wilson disease gene indicates that hepatic copper (Cu) transport is mediated by a P-type ATPase. The location of this Cu-transporting protein within the hepatocyte is not known; in view of its proposed function and current concepts of hepatic Cu transport, it may reside in intracellular membranes (endoplasmic reticulum (ER), lysosomes) and/or in the bile canalicular membrane. The objective of this study was to establish characteristics and localization of ATP-dependent Cu transport in human liver. Methods: We have investigated Cu transport in vesicles of human liver plasma membranes showing a gradual increase in enrichment of canalicular domain markers: i.e. basolateral liver plasma membranes (blLPM), a mixed population of basolateral and canalicular (XLPM) and canalicular liver plasma membranes (cLPM). Results: In the presence of ATP (4 mM) and an ATP-regenerating system, uptake of radiolabeled Cu ( 64Cu, 10 μM) into cLPM vesicles and, to a lesser extent, into blLPM and XLPM was clearly stimulated when compared to control AMP values. Initial uptake rates of ATP-dependent Cu transport were 5.6, 7.8 and 13.7 nmol·min −1·mg −1 protein for blLPM, XLPM and cLPM, respectively, and showed no relationship with marker enzyme activity of ER and lysosomes (glucose-6-phosphatase and acid-phosphatase, respectively). Leucine aminopeptidase activity, as a marker for the cLPM, significantly correlated with ATP-dependent uptake rates measured in different membrane preparations: r=0.70 ( n=9, p<0.05). Estimated K m and V max values of ATP-dependent Cu uptake were 49.5 μM and 36.9 nmol·min −1·mg −1 protein, respectively. Conclusion: This study provides biochemical evidence for the presence of an ATP-dependent Cu transport system in human liver (cCOP), mainly localized at the canalicular domain of the hepatocytic plasma membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.