Abstract
We tested whether dilation of outer medullary descending vasa recta (OMDVR) is mediated by cAMP, nitric oxide (NO), and cyclooxygenase (COX). Adenosine (A; 10(-6) M)-induced vasodilation of ANG II (10(-9) M)-preconstricted OMDVR was mimicked by the cAMP analog 8-bromoadenosine 3',5'-cyclic monophosphate (10(-10) to 10(-4) M) and reversed by the adenylate cyclase inhibitor SQ-22536. Adenosine (10(-4) M) stimulated OMDVR cAMP production greater than threefold. NO synthase blockade with N(G)-nitro-L-arginine methyl ester and N(G)-monomethyl-L-arginine (10(-4) M) did not affect adenosine vasodilation. Adenosine induced endothelial cytoplasmic calcium transients that were small. Indomethacin (10(-6) M) reversed adenonsine-induced dilation of OMDVR preconstricted with ANG II, endothelin, 4-bromo-calcium ionophore A23187, or carbocyclic thromboxane A(2). In contrast, selective A(2)-receptor activation dilated endothelin-preconstricted OMDVR even in the presence of indomethacin. We conclude that OMDVR vasodilation by adenosine involves cAMP and COX but not NO. COX blockade does not fully inhibit selective A(2) receptor-mediated OMDVR dilation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Regulatory, integrative and comparative physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.