Abstract
The ability of adenosine (ADO) to inhibit proliferation and protein synthesis (in particular, collagen synthesis) in cardiac fibroblasts (CF) may ameliorate adverse cardiac remodeling and fibrosis seen in heart failure patients. However, little is known about the signaling pathways that ADO may modulate in CF to alter cell phenotype. Accordingly, this study was designed to identify ADO receptors (AR) and the signaling pathways linked to them in primary cultures of adult rat CF. Quantitative RT-PCR data indicate that the mRNAs for all four known ARs (A(1)R, A(2a)R, A(2b)R, and A(3)R) are present in rat CF, with a greater prevalence of A(2) receptor subtypes. No coupling of AR to the G(q)-phospholipase C signaling pathway or to mobilization of calcium is measurable. Studies using subtype specific agents imply that the A(2a)R and A(2b)R couple to G(s)-adenylyl cyclase and A(1)R couple weakly to G(i)-adenylyl cyclase. 2-Chloroadenosine, 5'-N-ethylcarboxamidoadensoine, and other agents that elevate cellular cAMP stimulate extracellular signal-regulated kinase 1/2 activity in a pertussis toxin-insensitive manner. We conclude that a combination of cAMP-dependent signals generated via A(2a) and A(2b) receptors likely mediate ADO signaling in adult rat CF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.