Abstract

Although the modulation of host physiology has been interpreted as an essential process supporting baculovirus propagation, the requirement of energy supply for host antivirus reactions could not be ruled out. Our present study showed that metabolic induction upon AcMNPV (budded virus) infection of Bombyx mori stimulated virus clearance and production of the antivirus protein, gloverin. In addition, we demonstrated that adenosine receptor signaling (AdoR) played an important role in regulating such metabolic reprogramming upon baculovirus infection. By using a second lepidopteran model, Spodoptera frugiperda Sf-21 cells, we demonstrated that the glycolytic induction regulated by adenosine signaling was a conservative mechanism modulating the permissiveness of baculovirus infection. Another interesting finding in our present study is that both BmNPV and AcMNPV infection cause metabolic activation, but it appears that BmNPV infection moderates the level of ATP production, which is in contrast to a dramatic increase upon AcMNPV infection. We identified potential AdoR miRNAs induced by BmNPV infection and concluded that BmNPV may attempt to minimize metabolic activation by suppressing adenosine signaling and further decreasing the host's anti-baculovirus response. Our present study shows that activation of energy synthesis by adenosine signaling upon baculovirus infection is a host physiological response that is essential for supporting the innate immune response against infection.

Highlights

  • Baculoviruses are double-stranded circular DNA viruses with genomes of ∼80–180 kb

  • The results showed that under in vivo conditions, increased viral titer were only observed in Bombyx mori larvae injected with Bombyx mori nucleopolyhedrovirus (BmNPV) but not in those injected with AcMNPV (Figure 1B)

  • No difference between the control and both baculovirus-infected cells was found for other glycolytic genes, including pfk, tpi, gadph, and pglym; eno showed increased transcription after infection, but with no difference between AcMNPV and BmNPV infection

Read more

Summary

Introduction

Baculoviruses can infect many species of arthropods, among which lepidopteran larvae are the most common host [1, 2]. Autographa californica nucleopolyhedrovirus (AcMNPV) is the most thoroughly studied baculovirus, and it has been established as the primary baculovirus expression system since the 1980’s [3]. Another commonly studied baculovirus is Bombyx mori nucleopolyhedrovirus (BmNPV), which is used to express. AcMNPV is able to infect the broader range of lepidopteran larvae but has a lower capacity to infect B. mori, whereas BmNPV can only infect B. mori and is not capable of infecting the larvae of other Lepidoptera species [1, 7, 8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call