Abstract

Adenosine is known to modulate cell growth in a variety of mammalian cells either via the activation of receptors or through metabolism. We investigated the effect of adenosine on Baby Hamster Kidney (BHK) cell growth and attempted to determine its mechanism of modulation. In wild-type BHK cells, adenosine evoked a biphasic response in which a low concentration of adenosine (1-5 microM) produced an inhibition of colony formation but at higher concentrations (up to 50 microM) this inhibition was progressively reversed. However, no biphasic response was observed in an "adenosine kinase" deficient BHK mutant, "5a", which suggests that adenosine kinase plays an important role in the modulation of growth response to adenosine. Adenosine receptors did not appear to have a role in regulating cell growth of BHK cells. Specific A1 and A2 receptor antagonists were unable to reverse the effect of adenosine on cell growth. Even though a specific A3 adenosine receptor antagonist MRS-1220 partly reversed the inhibition in colony formation at 1 microM adenosine, it also affected the transport of adenosine. Thus adenosine transport and metabolism appears to play the major role in this modulation of cell growth as 5'-amino-5'-deoxyadenosine, an adenosine kinase inhibitor, reversed the inhibition of cell growth observed at 1 microM adenosine. These results, taken together, would suggest that adenosine modulates cell growth in BHK mainly through its transport and metabolism to adenine nucleotides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call