Abstract

The effects of adenosine on high-voltage-activated calcium channel currents in tiger salamander retinal ganglion cells were investigated in a mini-slice preparation. Adenosine produced a concentration-dependent decrease in the amplitude of calcium channel current with a maximum inhibition of 26%. The effects of adenosine on calcium channel current were both time- and voltage-dependent. In cells dialyzed with GTP-gamma-s, adenosine caused a sustained and irreversible inhibition of calcium channel current, suggesting involvement of a GTP-binding protein. The inhibitory effect of adenosine on calcium channel current was blocked by the A1 antagonist 8-cyclopentyltheophylline (DPCPX, 1-10 microm), but not by the A2 antagonist 3-7-dimethyl-1-propargylxanthine (DMPX, 10 microm), and was mimicked by the A1 agonist N6-cyclohexyladenosine (CHA, 1 microm) but not by the A2 agonist 5'-(N-cyclopropyl) carbox-amidoadenosine (CPCA, 1 microm). Adenosine's inhibition of calcium channel current was not affected by the L-type calcium channel blocker nifedipine (5 microm). However, adenosine's inhibition of calcium channel current was reduced to approximately 10% after application of omega-conotoxin GVIA (1 microm), suggesting that adenosine inhibits N-type calcium channels. These results show that adenosine acts on an A1 adenosine receptor subtype via a G protein-coupled pathway to inhibit the component of calcium channel current carried in N-type calcium channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.