Abstract

Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels couple the cellular metabolic state to electrical activity and are a critical link between blood glucose concentration and pancreatic insulin secretion. A mutation in the second nucleotide-binding fold (NBF2) of the sulfonylurea receptor (SUR) of an individual diagnosed with persistent hyperinsulinemic hypoglycemia of infancy generated KATP channels that could be opened by diazoxide but not in response to metabolic inhibition. The hamster SUR, containing the analogous mutation, had normal ATP sensitivity, but unlike wild-type channels, inhibition by ATP was not antagonized by adenosine diphosphate (ADP). Additional mutations in NBF2 resulted in the same phenotype, whereas an equivalent mutation in NBF1 showed normal sensitivity to MgADP. Thus, by binding to SUR NBF2 and antagonizing ATP inhibition of KATP++ channels, intracellular MgADP may regulate insulin secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.