Abstract

Adenosine has powerful inhibitory effects in the central nervous system. In this study, we aim to understand how adenosine controls the progression of seizure-like events (SLEs) in a seizure-prone region of the brain, the entorhinal cortex. We chose to use a low Mg 2+ model of epilepsy in an in vitro slice preparation where, in the entorhinal cortex, SLEs progress into a type of epileptiform activity called late recurrent discharges (LRDs) that bear resemblance to status epilepticus. Adenosine, acting via its A1 receptor, exerted powerful inhibitory effects to prevent the spontaneous progression to LRDs while the potent A1 receptor antagonist, DPCPX, accelerated the progression in a concentration dependent manner. The spontaneous progression from SLEs to LRDs was associated with a decline in total cellular ATP levels and studies with metabolic inhibitors indicated a key role for the production of endogenous adenosine from ATP. We therefore hypothesise that when ATP becomes rate limiting, extracellular adenosine levels fall, the normal inhibitory brake is removed and the progression from SLEs to LRDs or status epilepticus-like activity can ensue. Moreover, under these conditions, inhibition of the adenine nucleotide salvage pathways reversed the status epilepticus-like activity. Our findings suggest a powerful role for adenosine for the control of the progression to status epilepticus-like activity in an epilepsy model that is refractory to most anti-epileptic drugs. On this basis, manipulation of adenine nucleotide metabolism may represent a potential therapeutic approach for the treatment of status epilepticus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call