Abstract

Adenosine, released by cells in an injurious or hypoxic environment, possesses potent anti-inflammatory effects by inhibiting the production of proinflammatory cytokines and superoxide anions (O2-). We hypothesized that adenosine compounds also induced heterologous desensitization of chemokine receptors, which played a critical role in leukocyte trafficking. Our studies using adenosine receptor subtype-specific agonists revealed that pretreatment with adenosine compounds suppressed RANTES-induced chemotaxis and Ca2+ flux through activation of A2a adenosine receptor. Adenosine compounds also desensitized IL-8- and MCP-1-induced chemotaxis, but not that induced by fMLP. Activation of protein kinase A (PKA), a component of the signaling pathway induced by the A2a receptor, was sufficient to desensitize RANTES-induced chemotaxis. Inhibition of PKA reversed the desensitization effects of adenosine compounds, suggesting that PKA was necessary for A2a receptor-mediated heterologous desensitization. In a mouse model, prior activation of A2a receptors blocked RANTES-induced recruitment of leukocytes in an air pouch. Moreover, the A2a receptor-induced cross-desensitization also reduced the susceptibility of monocytes to infection by an R5 strain of HIV-1. Our results suggest that activation of A2a adenosine receptors suppresses chemokine receptor function, and such receptor cross-talk was based on the simple mechanism of PKA-mediated heterologous desensitization, thus contributing to the antiinflammatory activity of adenosine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call