Abstract

Hypobaric hypoxia (HH) at high altitudes leads to a wide range of cognitive impairments which can handicap human normal activities and performances. However, the underlying mechanism is still unclear. Adenosine A2A receptors (A2ARs) of the brain are pivotal to synaptic plasticity and cognition. Besides, insult-induced up-regulation of A2AR regulates neuroinflammation and therefore induces brain damages in various neuropathological processes. The present study was designed to determine whether A2AR-mediate neuroinflammation involves in cognitive impairments under acute HH. A2AR knock-out and wild-type male mice were exposed to a simulated altitude of 8000 m for 7 consecutive days in a hypobaric chamber and simultaneously received behavioral tests including Morris water maze test and open filed test. A2AR expression, the activation of microglia and the production of TNF-α were evaluated in the hippocampus by immunohistochemistry and ELISA, respectively. Behavioral tests showed that acute HH exposure caused the dysfunction of spatial memory and mood, while genetic inactivation of A2AR attenuated the impairment of spatial memory but not that of mood. Double-labeled immunofluorescence showed that A2ARs were mainly expressed on microglia and up-regulated in the hippocampus of acute HH model mice. Acute HH also induced the accumulation of microglia and increased production of TNF-α in the hippocampus, which could be markedly inhibited by A2AR inactivation. These findings indicate that microglia-mediated neuroinflammation triggered by A2AR activation involves in acute HH-induced spatial memory impairment and that A2AR could be a new target for the pharmacotherapy of cognitive dysfunction at high altitudes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.