Abstract

In fragile X syndrome (FXS) the lack of the fragile X mental retardation protein (FMRP) leads to exacerbated signaling through the metabotropic glutamate receptors 5 (mGlu5Rs). The adenosine A2A receptors (A2ARs), modulators of neuronal damage, could play a role in FXS. A synaptic colocalization and a strong permissive interaction between A2A and mGlu5 receptors in the hippocampus have been previously reported, suggesting that blocking A2ARs might normalize the mGlu5R-mediated effects of FXS. To study the cross-talk between A2A and mGlu5 receptors in the absence of FMRP, we performed extracellular electrophysiology experiments in hippocampal slices of Fmr1 KO mouse. The depression of field excitatory postsynaptic potential (fEPSPs) slope induced by the mGlu5R agonist CHPG was completely blocked by the A2AR antagonist ZM241385 and strongly potentiated by the A2AR agonist CGS21680, suggesting that the functional synergistic coupling between the two receptors could be increased in FXS. To verify if chronic A2AR blockade could reverse the FXS phenotypes, we treated the Fmr1 KO mice with istradefylline, an A2AR antagonist. We found that hippocampal DHPG-induced long-term depression (LTD), which is abnormally increased in FXS mice, was restored to the WT level. Furthermore, istradefylline corrected aberrant dendritic spine density, specific behavioral alterations, and overactive mTOR, TrkB, and STEP signaling in Fmr1 KO mice. Finally, we identified A2AR mRNA as a target of FMRP. Our results show that the pharmacological blockade of A2ARs partially restores some of the phenotypes of Fmr1 KO mice, both by reducing mGlu5R functioning and by acting on other A2AR-related downstream targets.

Highlights

  • Introduction FragileX syndrome (FXS) is characterized by a complex clinical phenotype and symptoms that include hyperactivity, autism, attention disorders, and seizures[1,2,3,4,5,6]

  • In this study, we aimed to evaluate if A2A receptors (A2ARs) play a role in fragile X syndrome (FXS) and if their blockade could modulate the physiological and behavioral phenotypes observed in the Fmr[1] KO mice. metabotropic glutamate 5 receptor (mGlu5R) are under the tight control of A2ARs in different brain areas[35,36,59,60,61,62,63]

  • As for the hippocampus, we demonstrated that A2ARs need to be activated to allow the effects of mGlu5Rs to occur[36]

Read more

Summary

Introduction

Introduction FragileX syndrome (FXS) is characterized by a complex clinical phenotype and symptoms that include hyperactivity, autism, attention disorders, and seizures[1,2,3,4,5,6]. Ferrante et al Translational Psychiatry (2021)11:112 signaling plays a causal role in FXS19 This “mGluR theory” was strongly supported by the finding that genetic reduction of mGlu5R expression is sufficient to correct a broad range of phenotypes in the Fmr[1] KO mouse, a murine model useful for the study of FXS20. Clinical studies suggested possible effects of the mGlu5R antagonist AFQ056 only on a subset of FXS patients[23]. Despite all these promising studies, in clinical trials no clear therapeutic benefit has been confirmed in heterogeneous populations of FXS patients treated with different mGlu5R inhibitors[24,25]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call