Abstract

It has been hypothesized that an interaction among adenosine A(1) receptors, protein kinase C (PKC) activation, and ATP-sensitive potassium channels (K(ATP)) mediates ischemic preconditioning in experiments on different animal species. The purpose of this study was to determine if activation of K(ATP) is functionally coupled to A(1) receptors and (or) PKC activation during metabolic inhibition (MI) in guinea pig ventricular myocytes. Perforated-patch using nystatin and conventional whole-cell recording methods were used to observe the effects of adenosine and adenosine-receptor antagonists on the activation of K(ATP) currents during MI induced by application of 2,4-dinitrophenol (DNP) and 2-deoxyglucose (2DG) without glucose, in the presence or absence of a PKC activator, phorbol 12-myristate 13-acetate (PMA). Adenosine accelerated the time course activation of K(ATP) currents during MI under the intact intracellular condition or dialyzed condition with l mmol/L ATP in the pipette solution. The accelerated effect of adenosine activation of K(ATP) under MI was not reversed by a nonselective Al adenosine receptor antagonist, 8-(p-sulfophenyl)theophylline (SPT), or a specific Al adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). However, the adenosine A(2) receptor antagonist alloxazine reversed the time course activation of the K(ATP) current under MI. An adenylate cyclase activator, forskolin, did not further abbreviate the time course activation of K(ATP) with or without adenosine. Application of a PKC blocker, chelerythrine, reversed the time course activation of K(ATP) by adenosine under MI. In addition, pretreatment with a PKC activator, PMA, had similar effects to adenosine, while adenosine did not further shorten the time required for activation of K(ATP) currents during MI with PMA pretreatment. There is no direct evidence of activation of K(ATP) currents by adenosine A(1) receptor during metabolic inhibition under our experimental condition. However, adenosine A(2) receptor activation is involved in the K(ATP) channel activation in the guinea pig ventricular myocytes, of which effect is not mediated through the increase in intracellular cAMP. Adenosine seems to interact with PKC activation to open K(ATP) during MI, but a possible link between the adenosine A(2) receptor and PKC activation in this process needs further elucidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call