Abstract
Presynaptic adenosine receptors inhibit transmitter release at many synapses and are known to exist on retinotectal terminals. In this paper we show that adenosine decreases retinotectal field potentials by approximately 30% and investigate the mechanism. First, as judged by the effects of specific calcium channel blockers, retinotectal transmission was mediated almost exclusively by N-type calcium channels, which are known to be modulated by adenosine A1 receptors. Transmission was completely blocked by either omega-Conotoxin GVIA (-100%, N-type blocker) or omega-Conotoxin MVIIC (-99%, N-, P- and Q-type blocker) and was not significantly affected by omega-Agatoxin IVA [+1.7 +/- 9. 3% (SE), P-,Q-type blocker], but was augmented slightly by nifedipine(+9.3 +/- 2.1%, L-type blocker). Second, the adenosine inhibition was presynaptic, as indicated by a 43% increase in paired-pulse facilitation. Third, the selective A1 agonist cyclohexyl adenosine (CHA) at 50 nM caused a 21% decrease in amplitude and the selective A2 agonist N6-[2-(3, 5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA) at 100 nM caused a 24% increase. Fourth, the selective A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) alone produced an increase in the field potential, suggesting a tonic inhibition mediated by endogenous adenosine. Fifth, pertussis toxin eliminated adenosine inhibition implicating Gi or Go protein coupling. Sixth, C-kinase activation eliminated the A1-mediated inhibition. In regenerating projections, adenosine also caused a decrease in transmission (-30 +/- 12%), but after induction of long-term potentiation (LTP) via trains of stimuli or via treatment with the phosphatase inhibitor okadaic acid, the adenosine response was converted to an augmentation. Because LTP is associated with C-kinase activation, this is consistent with C-kinase uncoupling the A1 receptor from inhibiting N-type Ca2+ channels. This uncovers the A2-mediated augmentation as demonstrated in normals with DPMA. Such an effect could account in part for the LTP of immature synapses and the change from rapidly fatiguing to robust synaptic transmission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.