Abstract
The hippocampus is a brain region involved in processing both memory and emotions, through a preferential involvement of the dorsal hippocampus (DH) and ventral hippocampus (VH), respectively. Adenosine A1 and A2A receptors (A1 R and A2A R) control both mood and memory, but it is not known if there is a different adenosine modulation of synaptic plasticity along the hippocampal axis. Using adult, C57BL/6 male mice, we show that both A1 R and A2A R were more abundant in DH compared with VH. However, recordings of field excitatory postsynaptic potentials at Schaffer collaterals-CA1 pyramidal synapses revealed that A1 R were equi-effective to inhibit basal excitatory synaptic transmission in DH and VH, but endogenous A1 R activation was more effective to depress the probability of release in VH. In contrast, the selective A2A R antagonist (SCH58261, 50nM) controlled both long-term potentiation (induced by a high frequency stimulation protocol) and long-term depression (induced by a low frequency stimulation protocol) selectively in DH rather than VH, whereas the selective A1 R antagonist (DPCPX, 100nM) revealed a similar tonic inhibition of long-term depression in DH and VH. These findings show a different control of synaptic plasticity by the adenosine modulation system in the dorsal and ventral poles of the hippocampus, which may underlie a different efficiency of the adenosine system to control mood and memory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.