Abstract

Adenosine A(1) receptors (A(1)Rs) have been characterized in primary cultures of neurons from cerebral cortex. The specific adenosine A(1) antagonist 8-cyclopentyl-1,3-[(3)H]dipropylxanthine bound to both membranes and intact cells. When saturation experiments were performed in membranes, a K(D) value of 0.76 nM and a B(max) of 57 fmol/mg of protein were obtained. Competition assays revealed a pharmacological profile characteristic of A(1)Rs. The presence of this receptor was further confirmed by RT-PCR analysis. The expression of the receptor showed no significant changes during the period of culture studied, up to 12 days in vitro. A(1)R agonist inhibited forskolin-stimulated adenylyl cyclase, showing the functional coupling of these receptors with the effector. alphaG(i1, 2) protein level, detected by immunoblot, presented an increase during the period of culture. This increase correlated with an increase in the mRNA level of alphaG(i1) but not alphaG(i2). By immunochemical assays, it is shown that these receptors are expressed in both the neuronal cell body and the proximal dendrites. Colocalization of A(1)Rs with microtubule-associated protein 2 and cell surface adenosine deaminase was shown by confocal microscopy. The high degree of colocalization observed between A(1)Rs and ectoadenosine deaminase in neurons could suggest an important role of the enzyme in adenosine-mediated neuromodulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.