Abstract

BackgroundIntracellular concentrations of adenosine-5’-triphosphate (ATP) are many times greater than extracellular concentrations (1–10 mM versus 10–100 nM, respectively) and cellular release of ATP is tightly controlled. Transient rises in extracellular ATP and its metabolite adenosine have important signaling roles; and acting through purinergic receptors, can increase blood flow and oxygenation of tissues; and act as neurotransmitters. Increased blood flow not only increases substrate availability but may also aid in recovery through removal of metabolic waste products allowing muscles to accomplish more work with less fatigue. The objective of the present study was to determine if supplemental ATP would improve muscle torque, power, work, or fatigue during repeated bouts of high intensity resistance exercise.MethodsSixteen participants (8 male and 8 female; ages: 21–34 years) were enrolled in a double-blinded, placebo-controlled study using a crossover design. The participants received either supplemental ATP (400 mg/d divided into 2 daily doses) or placebo for 15 d. After an overnight fast, participants underwent strength and fatigue testing, consisting of 3 sets of 50 maximal knee extensions performed on a Biodex® leg dynamometer.ResultsNo differences were detected in high peak torque, power, or total work with ATP supplementation; however, low peak torque in set 2 was significantly improved (p < 0.01). Additionally, in set 3, a trend was detected for less torque fatigue with ATP supplementation (p < 0.10).ConclusionsSupplementation with 400 mg ATP/d for 15 days tended to reduce muscle fatigue and improved a participant’s ability to maintain a higher force output at the end of an exhaustive exercise bout.

Highlights

  • Intracellular concentrations of adenosine-5’-triphosphate (ATP) are many times greater than extracellular concentrations (1–10 mM versus 10–100 nM, respectively) and cellular release of ATP is tightly controlled

  • When ATP is infused into the arterial blood flow of muscle, the half-life has been shown to be

  • In rats chronic oral administration of ATP at 5 mg/kg/day increased portal vein ATP concentration and nucleoside uptake by erythrocytes which resulted in an increase in ATP synthesis in the erythrocytes [11]

Read more

Summary

Introduction

Intracellular concentrations of adenosine-5’-triphosphate (ATP) are many times greater than extracellular concentrations (1–10 mM versus 10–100 nM, respectively) and cellular release of ATP is tightly controlled. Transient rises in extracellular ATP and its metabolite adenosine have important signaling roles; and acting through purinergic receptors, can increase blood flow and oxygenation of tissues; and act as neurotransmitters. Increased blood flow increases substrate availability but may aid in recovery through removal of metabolic waste products allowing muscles to accomplish more work with less fatigue. The extracellular metabolic functions of ATP have only recently been investigated, and primary to this function is the role of ATP in signal transduction through purinergic receptors found in most cell types [2]. Measurement of circulating free plasma ATP derived from oral supplementation may not be possible as exogenous free ATP or its metabolite adenosine are quickly taken up by blood components. The possibility exists for oral ATP to elicit metabolic effects despite an apparent lack of increased systemic free ATP concentrations

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.