Abstract

Adenomatous Polyposis Coli (APC) is lost in approximately 70% of sporadic breast cancers, with an inclination towards triple negative breast cancer (TNBC). TNBC is treated with traditional chemotherapy, such as paclitaxel (PTX); however, tumors often develop drug resistance. We previously created APC knockdown cells (APC shRNA1) using the human TNBC cells, MDA-MB-157, and showed that APC loss induces PTX resistance. To understand the mechanisms behind APC-mediated PTX response, we performed cell cycle analysis and analyzed cell cycle related proteins. Cell cycle analysis indicated increased G2/M population in both PTX-treated APC shRNA1 and parental cells, suggesting that APC expression does not alter PTX-induced G2/M arrest. We further studied the subcellular localization of the G2/M transition proteins, cyclin B1 and CDK1. The APC shRNA1 cells had increased CDK1, which was preferentially localized to the cytoplasm, and increased baseline CDK6. RNA-sequencing was performed to gain a global understanding of changes downstream of APC loss and identified a broad mis-regulation of cell cycle-related genes in APC shRNA1 cells. Our studies are the first to show an interaction between APC and taxane response in breast cancer. The implications include designing combination therapy to re-sensitize APC-mutant breast cancers to taxanes using the specific cell cycle alterations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.