Abstract

The results of seroepidemiological studies suggest that infection with adeno-associated virus type 2 (AAV2) is negatively correlated with the incidence of human papillomavirus (HPV)-associated cervical cancer. We studied the potential of AAV2 oncosuppression of HPV and showed that HPV/AAV2 coinfection of cells culminated in apoptotic death, as determined by DNA laddering and caspase-3 cleavage. The induction of apoptosis coincided with AAV2 Rep protein expression; increased S-phase progression; upregulated pRb displaying both hyper- and hypophosphorylated forms; increased levels of p21(WAF1), p16(INK4), and p27(KIP1) proteins; and diminished levels of E7 oncoprotein. In contrast, normal keratinocytes that were infected with AAV2 or transfected with the cloned full-length AAV2 genome failed to express Rep proteins or undergo apoptosis. The failure of AAV2 to productively infect normal keratinocytes could be clinically advantageous. The delineation of the molecular mechanisms underlying the HPV/AAV2 interaction could be harnessed for developing novel AAV2-derived therapeutics for cervical cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call