Abstract

Owing to their small size and safety profiles, adeno-associated viruses (AAVs) have become the vector of choice for gene therapy applications in the retina. In addition to the naturally occurring AAVs, several engineered variants with enhanced properties are being developed for experimental and therapeutic applications. Nonetheless, there are still some challenges impeding successful application of AAVs for a broader range of retinal gene therapies. The small size of AAV particles ensures efficient tissue transduction but also limits the packaging capacity to a few kilobases. Further, AAV's ability to cross retinal barriers is still an obstacle to pan-retinal transduction of the outer retina with tolerable doses. Lastly, despite overall safety, there have been recent reports of immune responses to AAVs in the eye. Hence, evaluation and prediction of immune responses to AAVs has come to be considered an integral part of future clinical success. This review focuses on the use of AAV in clinical trials for retinal diseases, and discusses developments of variants and novel strategies to overcome immune responses to AAVs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.