Abstract
Photorelaxation of adenine in water was reported to be ultrafast (within 180 fs) primarily due to radiationless relaxation. However, in the last two decades, several experimental and theoretical investigations on photoexcitation of adenine have revealed diverse types of decay mechanisms. Using time-dependent density functional excited-state nonadiabatic dynamics simulations we show that it is the water to adenine electron-driven proton transfer (EDPT) barrierless reaction responsible for the ultrafast component of the adenine relaxation, which, however, occurred only in the case of the 7H isomer of adenine with five water molecules. This result reveals a known reaction pathway, however not found in previous simulations, with inference for the ultrafast relaxation mechanisms of adenine reported in experiments. The 9H isomer of adenine with six water molecules relaxing in a water cluster followed the previously known structural distortion (C2) decay pathway. The observations of the adenine EDPT reaction with water provide the origin of the experimental ultrafast adenine decay component and present a possible method to tackle future computational challenges in molecular-level biological processes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.