Abstract
In myocardial hypertrophy and heart failure a series of adaptational changes occur some multiplying contractile units, others slowing shortening velocity and increasing economy of contraction. The demonstration of energy-saving mechanisms in heart failure has prompted further investigations of energy providing and utilizing metabolic pathways. The use of myocardial ATP as a substrate occurs mainly at the myosin-ATPase and at the Ca-ATPase of the sarcoplasmic reticulum. As the Michaelis constant of both enzymes for ATP is in the micromolar (microM) range, whereas cellular ATP content is about 5000 microM, these enzymes are not controlled by the availability of ATP as a substrate. In experimental heart failure in large animals, normal or reduced creatine phosphate levels (in most cases together with normal adenine nucleotides) have been described. Reduced creatine phosphate is found in models with increased oxygen consumption, and creatine phosphate may buffer the ATP pool in these models. In human heart failure due to dilated cardiomyopathy, where resting oxygen consumption per unit mass and lactate extraction are normal in most patients, normal adenine nucleotides, creatine phosphate, and mitochondrial function have been described in the initial studies. These results have been challenged by one study showing decreased ATP levels in dilated cardiomyopathy, correlating with the decrease in ejection fraction. However, only ATP has been measured in this study, whereas total adenine nucleotides may be a more suitable parameter. Recently published results have again demonstrated normal ATP and total adenine nucleotides in human heart failure. In the same patients, significantly decreased myocardial norepinephrine was measured, indicating that metabolic changes had occurred in these hearts, but were independent of adenine nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.