Abstract

AbstractVisible‐light driven photoconversion of CO2 into energy carriers is highly important to the natural carbon balance and sustainable development. Demonstrated here is the adenine‐dependent CO2 photoreduction performance in green biomimetic metal–organic frameworks. Photocatalytic results indicate that AD‐MOF‐2 exhibited a very high HCOOH production rate of 443.2 μmol g−1 h−1 in pure aqueous solution, and is more than two times higher than that of AD‐MOF‐1 (179.0 μmol g−1h−1) in acetonitrile solution. Significantly, experimental and theoretical evidence reveal that the CO2 photoreduction reaction mainly takes place at the aromatic nitrogen atom of adenine molecules through a unique o‐amino‐assisted activation rather than at the metal center. This work not only serves as an important case study for the development of green biomimetic photocatalysts used for artificial photosynthesis, but also proposes a new catalytic strategy for efficient CO2 photoconversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.