Abstract

Vemurafenib is a B-Raf V600E inhibitor that exerts significant inhibitory effects in melanoma but not in colon cancer, and the mechanism of vemurafenib resistance remains unclear. In this study, bioinformatics analysis of gene profiles in cancer cells treated with vemurafenib or its analog revealed that cell cycle progression is significantly affected by vemurafenib. We found that CDK1 is stably activated in the vemurafenib-resistant (VR) colon cancer sublines that we established, indicating that CDK1 activation is responsible for vemurafenib resistance. As the KCTD12-CDK1 interaction is necessary for CDK1 activation, we screened an FDA-approved drug library consisting of 616 compounds and identified that adefovir dipivoxil (AD), a nucleoside analog for treatment of HBV infections, disrupts the CDK1-KCTD12 interaction and induces G2 phase arrest in the cell cycle. Functional assays demonstrated that AD significantly inhibited colon cancer cell proliferation and tumorigenesis both in vitro and in vivo with no observed side effects. Furthermore, AD sensitized vemurafenib-resistant colon cancer cells and tumor xenografts to vemurafenib. This study reveals that CDK1 activation induces vemurafenib resistance and that AD is a promising therapeutic strategy for colon cancer both as a single agent and in combination with vemurafenib.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.