Abstract

The interaction of pterin-dependent phenylalanine hydroxylase from Chromobacterium violaceum with the cofactor analogue 5-deaza-6-methyltetrahydropterin and the cofactor 6,7-dimethyltetrahydropterin (DMPH4) has been investigated by multifrequency electron spin resonance (ESR) spectroscopy. 5-Deaza-6-methyltetrahydropterin, which lacks the N-5 nitrogen present in the pyrazine ring of DMPH4, binds tightly to the cupric form of the enzyme; however, no changes are observed in the ESR parameters of the copper center. In contrast, the binding of DMPH4 (or 6-methyltetrahydropterin) shifts the ESR parameters (g and A) associated with the cupric enzyme. In addition, superhyperfine transitions were resolved and assigned to hyperfine splitting from nitrogen ligands. ESR spectra of the enzyme recorded in the presence of [5-14N]DMPH4 or [5-15N]DMPH4 were computer simulated and found to be consistent with pterin serving as a direct donor ligand to the copper center through the N-5 position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call