Abstract
In this paper, we systematically analyze the empirical importance of standard conditions for the validity and generalizability of field experiments: the internal and external overlap and unconfoundedness conditions. We experimentally varied the degree of overlap in disjoint sub-samples from a recruitment experiment with more than 3,000 public schools, mimicking small scale field experiments. This was achieved by using different techniques for treatment assignment. We applied standard methods, such as pure randomization, and the novel minMSE treatment assignment method. This new technique should achieve improved overlap by balancing covariate dependencies and variances instead of focusing on individual mean values. We assess the relevance of the overlap condition by linking the estimation precision in the disjoint sub-samples to measures of overlap and balance in general. Unconfoundedness is addressed by using a rich set of administrative data on institution and municipality characteristics to study potential self-selection. We find no evidence for the violation of unconfoundedness and establish that improved overlap, and balancedness, as achieved by the minMSE method, reduce the bias of the treatment effect estimation by more than 35% compared to pure randomization, illustrating the importance of, and suggesting a solution to, addressing overlap also in (field) experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.