Abstract

This paper investigates the topology optimization of structures subjected to self-weight loads with self-supporting constraints for additive manufacturing. The integration of topology optimization procedures and additive manufacturing techniques can make the most of their advantages, and there is significant interest today in integrating both approaches. Imposing overhang constraints in topology optimization has been addressed, but primarily for classical topology optimization problems with fixed external loads, not design-dependent loads. This work combines an effective numerical procedure for contour evaluation with a modified version of the power-law model for low densities to eliminate the problems that arise when self-weight loads are considered. The overhang edge detection is based on the Smallest Univalue Segment Assimilating Nucleus (SUSAN) method, and a variable mask size technique is used to avoid eventual dripping problems. The proposed constraint function evaluates the overhang globally and allows control of the formation of unsupported contours for maximum stiffness design problems when self-weight loads are present. Several numerical experiments demonstrate the proposed method's effectiveness and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.