Abstract

Ambient pressure XPS has demonstrated its great potential in probing the solid/liquid interface, which is a central piece in electrocatalytic, corrosion, and energy storage systems. Despite the advantage of ambient pressure XPS being a surface sensitive characterization technique, the ability of differentiating the surface adsorbed species (∼Å scale) and bulk electrolyte (∼10 nm scale) in the spectrum depends on the delicate balance between bulk solution concentration (C), surface coverage (θ), bulk liquid layer thickness (L), and inelastic mean free path (λ) as a function of photon energy. By investigating a model system of gold dissolving in a bromide solution, the connection between theoretical prediction at the atomic resolution and macroscopic observable spectrum is established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.