Abstract
BackgroundThe utility of being able to spatially analyze health care data in near-real time is a growing need. However, this potential is often limited by the level of in-house geospatial expertise. One solution is to form collaborative partnerships between the health and geoscience sectors. A challenge in achieving this is how to share data outside of a host institution’s protection protocols without violating patient confidentiality, and while still maintaining locational geographic integrity. Geomasking techniques have been previously championed as a solution, though these still largely remain an unavailable option to institutions with limited geospatial expertise. This paper elaborates on the design, implementation, and testing of a new geomasking tool Privy, which is designed to be a simple yet efficient mechanism for health practitioners to share health data with geospatial scientists while maintaining an acceptable level of confidentiality. The basic premise of Privy is to move the important coordinates to a different geography, perform the analysis, and then return the resulting hotspot outputs to the original landscape.ResultsWe show that by transporting coordinates through a combination of random translations and rotations, Privy is able to preserve location connectivity among spatial point data. Our experiments with typical analytical scenarios including spatial point pattern analysis and density analysis shows that, along with protecting spatial privacy, Privy maintains the spatial integrity of data which reduces information loss created due to data augmentation.ConclusionThe results from this study suggests that along with developing new mathematical techniques to augment geospatial health data for preserving confidentiality, simple yet efficient software solutions can be developed to enable collaborative research among custodians of medical and health data records and GIS experts. We have achieved this by developing Privy, a tool which is already being used in real-world situations to address the spatial confidentiality dilemma.
Highlights
ResultsWe show that by transporting coordinates through a combination of random translations and rotations, Privy is able to preserve location connectivity among spatial point data
The following scenario is an all-too-common problem faced in the health care and delivery sector
Bringing in a spatial science collaborator would require Institutional Review Board (IRB) approval, and possibly the need for the analysis to occur within a secure onsite data environment
Summary
We show that by transporting coordinates through a combination of random translations and rotations, Privy is able to preserve location connectivity among spatial point data. Our experiments with typical analytical scenarios including spatial point pattern analysis and density analysis shows that, along with protecting spatial privacy, Privy maintains the spatial integrity of data which reduces information loss created due to data augmentation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.