Abstract
In the past 15+ years, gas chromatography (GC) has undergone a renaissance in its implementation on the basis of the "disruptive" technology of comprehensive two-dimensional gas chromatography (GC×GC). With a foundation based upon a two-column GC separation approach, GC×GC significantly alters the classical multidimensional gas chromatography (MDGC) method by employing very fast separation on a second dimension (2 D) after a conventional one-dimensional (i.e., single column; 1D) column separation. This allows the experimentalist to apply the advantages of multidimensionality to the total sample rather than to just discrete zones of the 1D separation that characterizes MDGC. This requires a new "language" to describe GC×GC separations, applied to the first dimension (1 D) and 2 D, and consideration of the modulation processes that define the transfer of analyte from the 1 D to the 2 D. The present review is based on the FACS Foundation lectureship of the author given at the 17th Asian Chemical Congress of the Federation of Asian Chemical Societies (FACS). The award lecture and this manuscript is based on material deriving largely from research in the area of MDGC and GC×GC separations of the author.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.