Abstract

Short natural draft dry cooling towers (NDDCTs) are susceptible to cold air inflow. A transient simulation on Gatton tower is carried out to study the time-dependent cold air inflow characteristic. Our results show that, the cold air inflow penetrates inside the tower after a short period of pseudo-steady state, and a steady state with the cold air inflow is finally formed. We also investigate the possibility of inducing swirling motions to counter the cold inflow. The results demonstrate that, by reducing the local vortices caused by the specific tower structure, and thinning the boundary layer thickness, swirl is able to decrease the cold air inflow effect. Finally, feasibility of the suggested approach was verified by comparing the energy required to create the swirl with the extra heat transfer from the heat exchangers in the tower which would have not been materialized because of the cold inflow. It was observed that, an extra 40 kW heat transfer gain can be anticipated if only 1 W is spent to induce the swirl.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call