Abstract

Deep learning has catalyzed a transformative shift in material discovery, offering a key advantage over traditional experimental and theoretical methods by significantly reducing associated costs. Models adept at predicting properties from chemical compositions alone do not require structural information. However, this cost-efficient approach compromises model precision, particularly in Chemical Composition-based Property Prediction Models (CPMs), which are notably less accurate than Structure-based Property Prediction Models (SPMs). Addressing this challenge, our study introduces a novel Teacher-Student (TS) strategy, where a pretrained SPM serves as an instructive 'teacher' to enhance the CPM's precision. This TS strategy successfully harmonizes low-cost exploration with high accuracy, achieving a significant 47.1% reduction in relative error in scenarios involving 100 data entries. We also evaluate the effectiveness of the proposed strategy by employing perovskites as a case study. This method represents a significant advancement in the exploration and identification of valuable materials, leveraging CPM's potential while overcoming its precision limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.