Abstract

Because of their broad biological coverage and increasing affordability transcriptomic technologies have increased our ability to evaluate cellular response to chemical stressors, providing a potential means of evaluating chemical response while decreasing dependence on apical endpoints derived from traditional long-term animal studies. It has recently been suggested that dose-response modeling of transcriptomic data may be incorporated into risk assessment frameworks as a means of approximating chemical hazard. However, identification of mode of action from transcriptomics lacks a similar systematic framework. To this end, we developed a web-based interactive browser—MoAviz—that allows visualization of perturbed pathways. We populated this browser with expression data from a large public toxicogenomic database (TG-GATEs). We evaluated the extent to which gene expression changes from in-life exposures could be associated with mode of action by developing a novel similarity index—the Modified Jaccard Index (MJI)—that provides a quantitative description of genomic pathway similarity (rather than gene level comparison). While typical compound-compound similarity is low (median MJI = 0.026), clustering of the TG-GATES compounds identifies groups of similar chemistries. Some clusters aggregated compounds with known similar modes of action, including PPARa agonists (median MJI = 0.315) and NSAIDs (median MJI = 0.322). Analysis of paired in vitro (hepatocyte)-in vivo (liver) experiments revealed systematic patterns in the responses of model systems to chemical stress. Accounting for these model-specific, but chemical-independent, differences improved pathway concordance by 36% between in vivo and in vitro models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.