Abstract
Over the past decade donor spin qubits in isotopically enriched $^{28}$Si have been intensely studied due to their exceptionally long coherence times. More recently bismuth donor electron spins have become popular because Bi has a large nuclear spin which gives rise to clock transitions (first-order insensitive to magnetic field noise). At every clock transition there are two nearly degenerate transitions between four distinct states which can be used as a pair of qubits. Here it is experimentally demonstrated that these transitions are excited by microwaves of opposite helicity such that they can be selectively driven by varying microwave polarization. This work uses a combination of a superconducting coplanar waveguide (CPW) microresonator and a dielectric resonator to flexibly generate arbitrary elliptical polarizations while retaining the high sensitivity of the CPW.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.