Abstract

Polygenic risk scores (PRS) are instrumental in genetics, offering insights into an individual level genetic risk to a range of diseases based on accumulated genetic variations. These scores rely on Genome-Wide Association Studies (GWAS). However, precision in PRS is often challenged by the requirement of extensive sample sizes and the potential for overlapping datasets that can inflate PRS calculations. In this study, we present a novel methodology, Meta-Reductive Approach (MRA), that was derived algebraically to adjust GWAS results, aiming to neutralize the influence of select cohorts. Our approach recalibrates summary statistics using algebraic derivations. Validating our technique with datasets from Alzheimer disease studies, we showed that the summary statistics of the MRA and those derived from individual-level data yielded the exact same values. This innovative method offers a promising avenue for enhancing the accuracy of PRS, especially when derived from meta-analyzed GWAS data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.