Abstract
When conducting urban forest inventories, complete or partial inaccessibility of sample plots results in non-response for a portion of the selected sample. Unfortunately, the non-response is rarely random and thus a potential bias may be imparted in the sample and associated data analyses. In this study, results from an alternative estimation method that employs response homogeneity groups (RHGs) appeared to be more robust to non-random non-response when compared to those of a standard estimation method. Across the six cities studied, the total non-response rates varied from 8.0 to 20.4%. Percent differences between the two methods in estimated number of trees ranged from −0.7 to 12.6%; whereas 1.4 to 14.8% differences were found for tree biomass density. While these differences only approximate the amount of non-response bias present under standard estimation methods, there is a clear indication that misleading results may be obtained if non-response bias is not adequately addressed. By implementing methods that mitigate potential non-response bias, urban forest inventory practitioners would increase the reliability of information used by city planners to make effective management and policy decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.