Abstract

In-scanner head motion often leads to degradation in MRI scans and is a major source of error in diagnosing brain abnormalities. Researchers have explored various approaches, including blind and nonblind deconvolutions, to correct the motion artifacts in MRI scans. Inspired by the recent success of deep learning models in medical image analysis, we investigate the efficacy of employing generative adversarial networks (GANs) to address motion blurs in brain MRI scans. We cast the problem as a blind deconvolution task where a neural network is trained to guess a blurring kernel that produced the observed corruption. Specifically, our study explores a new approach under the sparse coding paradigm where every ground truth corrupting kernel is assumed to be a “combination” of a relatively small universe of “basis” kernels. This assumption is based on the intuition that, on small distance scales, patients’ moves follow simple curves and that complex motions can be obtained by combining a number of simple ones. We show that, with a suitably dense basis, a neural network can effectively guess the degrading kernel and reverse some of the damage in the motion-affected real-world scans. To this end, we generated 10,000 continuous and curvilinear kernels in random positions and directions that are likely to uniformly populate the space of corrupting kernels in real-world scans. We further generated a large dataset of 225,000 pairs of sharp and blurred MR images to facilitate training effective deep learning models. Our experimental results demonstrate the viability of the proposed approach evaluated using synthetic and real-world MRI scans. Our study further suggests there is merit in exploring separate models for the sagittal, axial, and coronal planes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call