Abstract

AbstractSpinel LiNi0.5Mn1.5O4 (LNMO), high‐voltage and high‐power density, is a very promising cathode candidate. Nevertheless, its lack of cycling stability has historically been long accepted as an inherent issue. Based on the above problem, a strategy is initiated to directly address Mn dissolution and unstable interface structure. A beneficial solid‐phase reaction occurs at the LNMO interface, transforming the spinel phase into two functional phases. One is the layered phase that provides electrochemical activity and supports charge transport. The other is the rock‐salt like phase induced by Li/Mn exchange that can inhibit the dissolution of Mn and provide inert protection. The Li/Mn exchange structure increases the diffusion energy barriers of Mn, which restrains the loss of Mn, proven by the bond valence sum calculation. The two phases are modulated successfully at the LNMO interface to balance the stable material structure and excellent charge transfer, obtaining a sample with excellent electrochemical performance. The capacity retention rate of modified LNMO is 15% higher than that of the pristine sample after 500 cycles. The preparation method does not utilize any dopants or coatings and can play a guiding role in addressing issues regarding structural stability and electrochemical performance for cathode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.