Abstract

An ever increasing number of electronic devices integrated into the Internet of Things (IoT) generates vast amounts of data, which gets transported via network and stored for further analysis. However, besides the undisputed advantages of this technology, it also brings risks of unauthorized access and data compromise, situations where machine learning (ML) and artificial intelligence (AI) can help with detection of potential threats, intrusions and automation of the diagnostic process. The effectiveness of the applied algorithms largely depends on the previously performed optimization, i.e., predetermined values of hyperparameters and training conducted to achieve the desired result. Therefore, to address very important issue of IoT security, this article proposes an AI framework based on the simple convolutional neural network (CNN) and extreme machine learning machine (ELM) tuned by modified sine cosine algorithm (SCA). Not withstanding that many methods for addressing security issues have been developed, there is always a possibility for further improvements and proposed research tried to fill in this gap. The introduced framework was evaluated on two ToN IoT intrusion detection datasets, that consist of the network traffic data generated in Windows 7 and Windows 10 environments. The analysis of the results suggests that the proposed model achieved superior level of classification performance for the observed datasets. Additionally, besides conducting rigid statistical tests, best derived model is interpreted by SHapley Additive exPlanations (SHAP) analysis and results findings can be used by security experts to further enhance security of IoT systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.