Abstract
One of the major problems with the GPU on-chip shared memory is bank conflicts. We analyze that the throughput of the GPU processor core is often constrained neither by the shared memory bandwidth, nor by the shared memory latency (as long as it stays constant), but is rather due to the varied latencies caused by memory bank conflicts. This results in conflicts at the writeback stage of the in-order pipeline and causes pipeline stalls, thus degrading system throughput. Based on this observation, we investigate and propose a novel Elastic Pipeline design that minimizes the negative impact of on-chip memory bank conflicts on system throughput, by decoupling bank conflicts from pipeline stalls. Simulation results show that our proposed Elastic Pipeline together with the co-designed bank-conflict aware warp scheduling reduces the pipeline stalls by up to 64.0 % (with 42.3 % on average) and improves the overall performance by up to 20.7 % (on average 13.3 %) for representative benchmarks, at trivial hardware overhead.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.