Abstract

Low- <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> dielectrics, which are beneficial for chip resistance-capacitance ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">RC</i> ) delay improvement, crosstalk-noise minimization, and power-dissipation reduction, are indispensable for the continuous scaling of advanced VLSI circuits, particularly that of high-performance logic circuits. In this paper, several critical challenges for Cu/low- <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> time-dependent dielectric-breakdown (TDDB)-reliability qualification will be reviewed. First, a low- <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> TDDB field-acceleration model and its determination will be discussed. Second, the macroscopic interconnect line-to-line spacing variation across the wafer and the microscopic line-to-line spacing nonuniformity induced by line-edge roughness within the same test structure and their impacts on low- <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> TDDB reliability will be carefully examined. The Weibull shape-parameter dependence on applied stress voltage due to such global and local spacing variations will be analyzed. Finally, the moisture effect on low- <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> TDDB and capacitance stability as an example of the impact from process integration will be reported, demonstrating that low- <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">k</i> TDDB is sensitive to back-end-of-the-line integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.