Abstract

Concomitant gradients induce phase errors that increase quadratically with distance from isocenter. This work proposes a complex-based fitting method that addresses concomitant gradient phase errors in chemical shift encoded (CSE) MRI estimation of proton density fat fraction (PDFF) and R2 * through joint estimation of pass-specific phase terms. This method is applicable to time-interleaved multi-echo gradient-echo acquisitions (i.e., multi-pass acquisitions) and does not require prior knowledge of gradient waveforms typically needed to address concomitant gradient phase errors. A CSE-MRI spoiled gradient echo signal model, with pass-specific phase terms, is introduced for non-linear least squares estimation of PDFF and R2 * in the presence of concomitant gradient phase errors. Cramér-Rao lower bound analysis was used to determine noise performance tradeoffs of the proposed fitting method, which was then validated in both phantom and in vivo experiments. The proposed fitting method removed PDFF and R2 * estimation errors up to 12% and 10 s-1 , respectively, at ±12 cm off isocenter (S/I) in a water phantom. In healthy volunteers, PDFF and R2 * bias was reduced by ~10% (12 cm off-isocenter) and ~30 s-1 (16 cm off-isocenter), respectively. An evaluation in 29 clinical liver datasets demonstrated reduced PDFF bias and variability (8.4% improvement in the coefficient of variation), even with the imaging volume centered at isocenter. Concomitant gradient induced phase errors in multi-pass CSE-MRI acquisitions can result in PDFF and R2 * estimation biases away from isocenter. The proposed fitting method enables accurate PDFF and R2 * quantification in the presence of concomitant gradient phase errors without knowledge of imaging gradient waveforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.