Abstract

There has been a great deal of interest about negotiations having interdependent issues and nonlinear utility spaces as they arise in many realistic situations. In this case, reaching a consensus among agents becomes more difficult as the search space and the complexity of the problem grow. Nevertheless, none of the proposed approaches tries to quantitatively assess the complexity of the scenarios in hand, or to exploit the topology of the utility space necessary to concretely tackle the complexity and the scaling issues. We address these points by adopting a representation that allows a modular decomposition of the issues and constraints by mapping the utility space into an issue-constraint hypergraph. Exploring the utility space reduces then to a message passing mechanism along the hyperedges by means of utility propagation. Adopting such representation paradigm will allow us to rigorously show how complexity arises in nonlinear scenarios. To this end, we use the concept of information entropy in order to measure the complexity of the hypergraph. Being able to assess complexity allows us to improve the message passing algorithm by adopting a low-complexity propagation scheme. We evaluated our model using parametrized random hyper- graphs, showing that it can optimally handle complex utility spaces while outperforming previous sampling approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.