Abstract

This paper investigates the scenario in which a weak desired signal reaches a poorly selective receiver along with a high-powered pulsed radar occupying a neighboring channel. Traditionally, an automatic gain control (AGC) is used to fit the high-powered radar into the dynamic range of the receiver. However, this approach desensitizes the receiver because it also sacrifices the signal-to-noise ratio (SNR) of the desired signal. We propose the use of an auxiliary receive path to address this problem of strong neighboring channel signals. In this method, receiver gain is not lowered to avoid clipping. Instead, the strong signal is allowed to clip and distort the desired signal. This paper shows that only a subset of the symbols contained in the desired signal will be distorted; hence, redundancy within the desired signal (due to forward error correction) can be exploited to “fill the gaps” created by the distortion. The auxiliary path samples the envelope of the strong neighboring-channel signal and informs the decoder about which symbols are distorted (or “bad”) and which symbols are not distorted (or “good”). This additional information is shown to improve the estimation performance of the decoder in the presence of high-powered neighboring-channel radar. Using simulation and hardware-based experiments, it is shown that auxiliary-path-based receivers can obtain a significantly better throughput performance than AGC-based receivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.