Abstract
We show that for the tensor product of an entanglement-breaking quantum channel with an arbitrary quantum channel, both the minimum entropy of an output of the channel and the Holevo–Schumacher–Westmoreland capacity are additive. In addition, for the tensor product of two arbitrary quantum channels, we give a bound involving entanglement of formation for the amount of subadditivity (for minimum entropy output) or superadditivity (for classical capacity) that can occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.